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Abstract. Dental decay is one of the most common oral health problems worldwide, but
datasets about it are very limited. This paper introduced a new dataset for dental decay,
which included images of children over 12 years old from many dental facilities in Viet
Nam. At the same time, we also introduced a new change learning rate method for SGD
optimizer. To verify the effectiveness of the proposed method, we compare the results with
the Adam optimizer to evaluate the differences in convergence speed and accuracy based
on training 3 models: Faster R-CNN, YOLOv3 and DETR, without using pretrained
weights
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1. INTRODUCTION. Recording oral health status, detecting, and diagnosing con-
ditions, including dental decay, are routine tasks in dentistry. These diagnoses provide
patients with advice on disease prevention and treatment [1]. From a clinical perspective,
direct examination is the preferred method due to the fact that it can be performed easily
and achieves acceptable accuracy after oral cleaning [2][3][4].

However, even experienced dentists can provide conflicting diagnoses. Therefore, inde-
pendent verification through methods that use artificial intelligence can meet the desired
requirements. Although visual examination (VE) remains the preferred approach for
identifying dental decay, analyzing digital images of the oral cavity in a machine-readable
format can serve as an equivalent method. These images meet the essential criteria needed
for automated analysis.

The first published papers proposed using convolutional neural network (CNN) models
to detect dental decay based on X-ray images [5][6][7] or infrared transillumination images
[8][9][10]. In recent years, several researchs have attempted to use color images of the oral
cavity to automatically detect and classify dental decay based on AI [11][12]. In this
research, we focus on detecting and classifying dental decay using deep learning models
(experimental method), comparing the diagnostic performance of the models with expert
assessments in color images.
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This research paper focuses on analyzing and experimenting with three of the most
widely used deep learning models for object detection today: Faster R-CNN, YOLOv3,
and DETR. Specifically, we will introduce and analyze model information; present the
results of these models with well-known available dataset is COCO,... and our collected
dataset.

2. RELATED WORK. Since 2012, with the emergence of AlexNet [13] and advanced
techniques such as ReLU, Dropout, and LRN have achieved impressive results in object
detection. From this point, object detection methods can be divided into two types:
Single-stage object detectors, exemplified by the YOLO algorithms. [14] and multi-stage
object detectors, which include several algorithms such as R-CNN, Fast R-CNN, Faster
R-CNN, Mask R-CNN,... [15]

By 2020, after making a significant impact in the field of Natural Language Processing
(NLP), the Transformer was developed for application in object detection with the DETR
model, opening up a new trend in object detection.

In this research paper, we will analyze three representative models for three trends in
the object detection problem: Faster R-CNN for multi-stage object detection, YOLOv3
for single-stage object detection, and DETR for the end-to-end trending.

2.1. Faster-RCNN. Faster R-CNN [16] is an advanced object detection model composed
of two primary modules. The first module is a deep fully convolutional network known as
the Region Proposal Network (RPN), which is responsible for generating region proposals.
This network operates by scanning the entire input image, identifying and generating
regions that are likely to contain objects. By applying convolutional layers, the RPN can
highlight areas of interest within the image, there by providing valuable information for
rapid and accurate object detection.

Figure 1. The Module RPN acts as the ”attention”

The second module within the Faster R-CNN framework is Fast R-CNN, an improved
method for object detection as introduced in a previous study [17]. The Fast R-CNN
module processes the regions proposed by the RPN, classifying objects and predicting
the bounding boxes for each detected object. Specifically, once it receives the proposed
regions from the RPN, Fast R-CNN determines the type of object within each region
and refines the positions to achieve more precise predictions. The structure of the Faster
R-CNN model, illustrating how these two modules interact, is depicted in Figure 1
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Region Proposal Networks (RPN). In Fast R-CNN, the region proposal process
is carried out by traditional algorithms such as Selective Search or EdgeBoxes, which are
costly and inefficient. The RPN addresses this issue by automatically generating region
proposals during the training and prediction phases of the model.

The RPN takes an input image of any size and outputs a set of object boxes. To
generate region proposals, we slide a small window, size 3 x 3 over the input feature map.

At each position of the sliding window, the model simultaneously predicts multiple
region proposals. This approach assumes that the maximum number of proposals gener-
ated for each position is denoted as k. By predicting multiple proposals in one step, the
model can efficiently identify potential object regions throughout the image, maximizing
coverage across various object sizes and shapes.

Each region proposal is parameterized relative to a reference box known as an anchor.
An anchor serves as a baseline or reference frame for proposals, allowing the network
to estimate the bounding boxes relative to a predefined point in the image. Anchors
are placed at the center of each sliding window position and are associated with specific
aspect ratios and scales. This means that each anchor represents a potential object shape,
enabling the model to predict objects of different sizes and orientations by adjusting these
anchors.

For Fast R-CNN, the image is resized, and the feature map is computed for each scale,
based on feature pyramids using HOG or deep convolutional networks (Figure 2). This
method is usable but time-consuming in terms of computation. For Faster R-CNN, multi-

Figure 2. The pyramid of images and feature maps is constructed

scale sliding windows are used directly on the feature maps (Figure 3).

Figure 3. A pyramid of filters with multiple scales/sizes
is applied to the feature map.
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Loss Function for RPN. The loss function can be defined as follows:

L({posi}, {truthi}) =
1

Nclass

∑
i

Lclass(posi, pos
∗
i )

+λ
1

Nreg

∑
i

p∗iLreg(truthi, truth
∗
i ). (1)

Here, i represents the index of an anchor within the mini-batch, and posi denotes the
predicted probability that anchor i contains an object. Label of ground-truth pos∗i is 1
if anchor has object, is 0 if has no object. truthi i is the representing vector of four
coordinate parameters of the predicted bounding box., truth∗

i belongs to a ground-truth
box associated with an anchor containing an object. Classification loss function Lclass

record the loss for two classes: with object and without object. With regression loss
function, Lreg(truthi, truth

∗
i ) = R(truthi−truth∗

i ) where R is strong loss function(smooth
L1). pos

∗
iLreg means that the regression loss function is activated for positive anchors (pos∗i

= 1) and is inactive in other cases (pos∗i = 0). Output of cls class and reg class include
{posi} and {truthi} respectively.
Lclass and Lreg is normalized respectively by Nclass and Nreg, is weighted by a balancing

parameter λ. class in (1) is normalized by mini-batch size (example: Nclass = 256) and
reg is normalized by number of anchor.

2.2. YOLOv3. YOLOv3 [18] shared the ideas with Faster R-CNN is using anchor boxes.
However, while Faster R-CNN uses a two-stage detection model, YOLOv3 does not have
a region proposal step and is significantly faster than Faster R-CNN.

Figure 4. Overview of the Faster R-CNN and YOLO pipeline

Bounding Box Prediction. YOLOv3 uses a technique called dimension clustering
to optimize the prediction of bounding boxes, where anchor boxes serve as reference
templates. For each bounding box, the model predicts four coordinates: ax, ay, aw, ah.
Specifically, if a grid cell is offset from the top-left corner of the image by (cx, cy) and the
bounding box prior has a predefined width and height, denoted as pw and ph then the
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predictions are generated based on these reference points:

bx = σ(ax) + cx

by = σ(ay) + cy

bw = pwe
a
w

bh = phe
a
h

YOLOv3 employs logistic regression to predict an objectness score for each bounding box,
a method similar to that used in YOLOv2 [19]. This score represents the likelihood that
a bounding box contains an object. The concept of predicting objectness scores in this
manner draws inspiration from the Faster R-CNN model. The objectness score should
ideally be 1 (indicating a positive label) if a bounding box prior has more overlap with a
ground truth object than any other bounding box prior. This high score signals that the
bounding box is well-aligned with an actual object in the image.

If a bounding box prior is not the optimal one but still has sufficient overlap with a
ground truth object—exceeding a specified threshold—the prediction is ignored. YOLOv3
sets this threshold at 0.5. Additionally, YOLOv3 assigns only one bounding box prior to
each ground truth object to avoid redundancy. If a bounding box prior is not matched
to any ground truth object, the model does not incur a loss for the coordinate or class
predictions for that box, and it only considers the objectness score, thus streamlining the
prediction process.

Class Prediction. Each predicted bounding box assigns possible classes it may con-
tain through multi-label classification. During training, the authors apply binary cross-
entropy loss for label prediction. In this approach, softmax is avoided for label classifi-
cation, as it assumes that each box can have only one label, which does not hold true
for our dataset. This model extracts features from these scales using a method similar to
Feature Pyramid Networks (FPN) [20]

Feature Extractor. YOLOv3 is used Darknet-53 network to feature extractor.

Predictions Across Scales. YOLOv3 predicts bounding boxes at three distinct scales
of the feature map. The model utilizes a mechanism akin to Feature Pyramid Networks
(FPN) to extract features from these scales. Specifically:

1. From the base feature extractor, several additional convolutional layers are added to
refine the extracted features. The final convolutional layer produces a 3D tensor containing
essential information about each bounding box, including coordinates, objectness scores,
and class predictions.

2. Next, YOLOv3 upscales the feature map from the previous two layers by a factor
of two, while also extracting a feature map from an earlier network layer. This map is
then merged with the upscaled feature map through concatenation. The authors then
apply several convolutional layers to process the concatenated feature map, resulting in
a predicted tensor that mirrors the previous one, but with doubled dimensions.

3. This process is repeated again to predict bounding boxes at the final scale. As a
result, predictions at the third scale leverage all prior computations along with detailed
features from the earlier layers of the network.

2.3. DETR(DEtection TRansformer). Leveraging the advantages of Transformer model
[21], in 2020, a research team at Facebook AI announced the DERT model. [22].
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Figure 5. Overview DETR architecture

DETR architecture. The DETR architecture is notable for its simplicity, as shown in
Figure 6. It consists of three key elements: a CNN backbone for extracting compact fea-
ture representations, an encoder-decoder transformer, and a simple feed-forward network
(FPN) responsible for generating the final detection results.

Backbone. Starting with the image aimg ∈ R3×height0×width0 (having 3 channels), a
standard backbone using CNN produces a lower-resolution activation map f ∈ RC×height×width.
Typical values for C are 2048, and height, width = height0/32, width0/32.
Transformer encoder. First, a 1x1 convolution reduces the channel dimension of the

high-level activation map f from C to a smaller dimension d, resulting in a new feature
map z0 ∈ Rd×height×width. Since the encoder requires a sequence as input, the spatial
dimensions of z0 are collapsed into a single dimension, yielding a d × height × width
feature map. Each encoder layer follows a standard architecture and consists of a multi-
head attention module and a Feed Forward Network (FFN). Given that the transformer
architecture is permutation-invariant, positional encodings need to be fixed and are added
to the input of each attention layer.

Transformer decoder. The DETR decoder uses a Transformer architecture to pro-
cess S embeddings simultaneously rather than sequentially. Unique predictions are en-
sured through distinct learned positional encodings called object queries, added at each
attention layer. The decoder converts these queries into output embeddings, which are de-
coded into bounding box coordinates and class labels via a feed-forward network, yielding
S predictions.

Set Prediction Loss for Object Detection. DETR produces a fixed number S of
predictions in a single pass through its decoder, where S is chosen to be larger than the
average object count per image. A main challenge during training is comparing these
predictions (in terms of class, position, and size) to the ground truth. DETR’s loss
function solves this by first identifying an optimal one-to-one matching between predicted
and ground truth objects, then applying object-specific loss terms, such as for bounding
box losses.

Let h represent the set of ground-truth objects, and let ĥ = {ĥi}Si =1 denote a set of S
predictions. Since S is chosen to be larger than the number of objects in the image, DETR
treats h as a set of size S by padding it with empty (no-object) entries. To compute the

correspondence between the sets h and ĥ, DETR searches for a permutation of S elements,
σ ∈ σN , that minimizes the cost:

σ̂ = arg min
σ∈σS

S∑
j

Lmatch(hj, ĥσ(j)) (2)
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Where Lmatch(hj, ĥσ(j)) is a pair-wise matching cost between ground truth hi and a predic-
tion with index σ(j). This optimal assignment is computed efficiently with the Hungarian
algorithm.

The next step is to calculate the loss function, specifically the Hungarian loss, for all
pairs that were matched in the previous step:

LHung(h, ĥ) =
N∑
i=1

[
− log p̂σ̂(i)(ci)

+1{ci ̸=∅}Lbox(bi, b̂σ̂(i))] (3)

where σ̂ is the optimal assignment computed in the first step.

3. DATASET AND CHANGING LEARNING RATE METHOD DESCRIP-
TIONS.

3.1. Dataset. Panoramic RGB images were taken from patients 12 years old and older
using advanced dental imaging equipment. To protect patient privacy and ensure security,
images were randomly chosen from the hospital’s database, without personal information
being taken into account.

The images are annotated with three predefined labels: enamel decay, dentin decay,
and pulpitis decay. The evaluation and labeling processes are guided and supervised by
experts in the field of dentistry. We can see the description of each label in Figure 6.

Signs of enamel decay are the appearance of opaque white streaks, black spots, or brown
spots on the surface of the tooth, which are often easily visible to the naked eye (Figure
6-A). With dentin decay, the typical symptom is the appearance of cavities in the tooth,
leading to loss a part of the tooth (Figure 6-B). In the case of pulpitis decay, In the case
of deep dentin caries, deep black cavities can clearly be seen penetrating into the tooth
root, causing the tooth to lose its original shape.

Figure 6. Example for each label. Enamel decay (6-A), Dentin decay
(6-B), Pulpitis decay (6-C)

Our dataset contains a total of 1,981 color images divided into two parts as follows:
(1) Training dataset: 1387 images
(2) Testing dataset: 504 images
Due to the unique characteristics of the dataset, which have not yet appeared in do-

mestic or international research, we have tentatively named this dataset: Tooth Decay
PTIT 2024 (TDP2024). Figure 7 was showed the distribution of images for each label in
our dataset
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Figure 7. Statistics of the number of images for each label

3.2. Changing learning rate method. There are several methods to adjust the learn-
ing rate. Typically, the Adam optimizer function [23] (Equation (4)) is used to automat-
ically support the adjustment of the learning rate.

gt = ∆θL
wt = γ1wt−1 + (1− γ1)gt

nt = γ2nt−1 + (1− γ2)g
2
t

θt = θt−1 +
η√

nt

1−βt
2
+ ϵ

× wt

1− βt
1

(4)

However, using Adam requires a small learning rate, which leads to slow convergence.
Additionally, Adam has poor generalization with complex data, making it unsuitable
for our dataset. Besides Adam, another commonly used normalization function is SGD
(Stochastic Gradient Descent) combined with momentum. The overall formula for SGD
is expressed as follows:

gnormalized =
g

||g||p
v = βv + (1− β)gnormalized

θt = θt−1 − ηv (5)

SGD is relatively simple, easy to understand, converges quickly, and generalizes well to
data. However, it still has a significant drawback: a fixed learning rate. If the learning
rate is initialized too high, it will prevent the algorithm from converging, causing it to
oscillate around the target due to the large step size; conversely, a small learning rate will
negatively affect the training speed.

Our research introduced a new menthod for adjusting the learning rate during the
training process use SGD optimizer combined with momentum. Current optimization
methods typically assume that the derivative of the function in the model is at a point
approaching a maximum or on a flat region of the function. When updating parameters,
the derivative point gradually moves toward the minimum. However, this assumption
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Figure 8. Assumption of another methods (8-A) and our method
motivation (8-B)

fails to address the practical issue where some derivative points reach local minima but
cannot overcome steep slopes of the function to progress toward the global minimum.

The idea of our proposed method is based on the assumption that the derivative is at
a local minimum and needs to be elevated to a higher value to overcome the adjacent
maximum. To avoid the case where the derivative fails to converge, we also implement an
adaptive learning rate after pushing this parameter past the maximum of the derivative.
The motivation of this method can be compare with another methods in Figure 8. Figure
8-A illustrates for assumption of another optimizer method like: SGD, Adam,... Figure
8-B describe our method.

Our method has two phases:
First phase: First, we proceed to initialize the initial learning rate (lrinit) with a value

of 1e-2 for each model. During this phase, the learning rate will gradually increase from
a very small value to lrinit in some of the initial batches, determined by the parameter
burn in. Target of this phase is help derivative point can get out local minimum and over
the max point of function.

lr = lrinit ×
batches done

burn in
(6)

(batches done < burn in)

Where:

• lrinit: initial learning rate value
• batches done: total number of batches processed up to the current batch
• burn in: number of batches in the burn-in phase

Second phase: decrease gradually according to learning rate milestones (lrsteps) and
update the learning rate. After burn in phase, if batches done exceeds certain milestones
specified in lrsteps, the learning rate will gradually decrease at each milestone.

lr = lrinit ×
∏

threshold≤batches done

value (7)
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With each threshold in each threshold in lrsteps, if batches done exceeds that threshold,
the learning rate will be multiplied by the corresponding value. After calculating the new
learning rate, this value will be reassigned to each parameter group in the optimizer.

3.3. Dental caries detection overview. Although there are differences in their initial
structures, when applied to the problem of dental caries detection, all these methods share
a basic architecture as described in Figure 9

Figure 9. Overview of Dental caries detection

First, a set of images is fed into the training process. During training process, our
research using batch size is 16. This means that each data batch fed into one epoch
consists of 16 images. This does not imply that 16 images are the optimal choice, but it
is due to the limitations of our hardware.

These images are passed through a convolutional neural network to extract important
features, resulting in feature maps. After feature extraction, the model proposes candidate
regions containing potential objects. Faster R-CNN and YOLOv3 utilize anchor boxes,
while DETR uses object queries to detect objects.

During training, the model is optimized based on a loss function. This loss function
guides the training process by adjusting the model’s parameters to minimize the error
between predictions and ground truth labels.

At the end of the training process, a model is obtained for object detection. The next
section will present the training process and the results of the models.

4. RESULTS.

4.1. Experimental setup and Training process. The deep learning models analyzed
above all use a CNN to extract information from image feature. To increase objectivity
in model evaluation, this study uses different feature extraction networks for each model.
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However, for YOLOv3, which has limited flexibility in feature extraction networks, we
retain the original Darknet-53 network. The CNN networks used in this research are:
VGG16 [24], Resnet50, Resnet101 vand Resnet152 [25]. These are classic models that
have been considered effective for image recognition in recent years.

This study uses mean Average Precision (mAP) and Loss in the test dataset as evalu-
ation metrics due to their relevance for assessing our dataset.

Figure 10 and Figure 11 are overviews for the training process using Adam optimizer
and our method.

Figure 10. Training process with models and multi backbones using
Adam optimizer

It is evident that during the training process of the Faster R-CNN model with both
VGG16 and ResNet101 backbones, the Adam optimizer results in relatively low mAP and
high Loss values. Notably, when using VGG16, in the final epochs of training, the Loss
increases significantly, and the mAP drops to approximately 0, indicating an abnormality
in the training process. With ResNet101 as the backbone, the model’s mAP remains low,
and from around the 20th epoch onward, both Loss and mAP show almost no change,
suggesting signs of overfitting.

For YOLOv3, the Adam optimizer provides relatively stable training results, with Loss
and mAP still showing a tendency to improve with continued training. However, for the
DETR model, the Loss is extremely high, and the mAP is very low, indicating ineffective
learning. Furthermore, with the ResNet50 backbone, the Loss generally does not decrease
during training, showing that the model fails to learn. On the other hand, with the
ResNet152 backbone, while the Loss decreases, it remains significantly high relative to
the mAP.

After applying the proposed learning rate adjustment method to the models, the train-
ing results were very promising, especially with the Faster R-CNN model. With the
VGG16 backbone, the model achieved significantly higher metrics compared to Adam,
and the convergence speed was faster, requiring just over 30 epochs before overfitting
began.

For YOLOv3, the model converged faster than when using Adam; however, the mAP
score was lower.
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Figure 11. Training process with models and multi backbones using our
method

For the DETR model, the results of applying the proposed method were not significant.
The Loss decreased during training, indicating that the model was able to learn, but it
remained very high. While the mAP score improved, the overall effectiveness of the model
was still poor.

4.2. Comparison of Results Among Models. To assess the effectiveness of the pro-
posed improvements and to evaluate how well the model adapts to the TDP2024 dataset,
the research involves a comprehensive comparison of key metrics. Specifically, we com-
pare the performance of a model trained with a fixed learning rate to that of a model
trained with a variable learning rate, as proposed in our approach. This comparison aims
to determine whether the adaptive learning rate improves model convergence and overall
performance on the DP2024 dataset.

Furthermore, to gain a broader perspective on the model’s capabilities, we also bench-
mark its performance on the prepared TDP2024 dataset against the widely used COCO
dataset [26]. The COCO dataset, being a well-established benchmark in the field, provides
a valuable comparison point, enabling us to understand how the model performs relative
to other state-of-the-art models that have been trained and evaluated on this dataset.

The mean Average Precision (mAP) and loss metrics are then calculated. Since this
measurement takes into account the ability to match randomly and the correlation of the
degree of deviation, we believe that it is more reliable and convincing than pure accuracy.

To confirm the effectiveness of the proposed method, we conducted a comparison based
on the metrics presented in Table I. It can be observed that the proposed method, which
involves changing the learning rate during the training process, is more effective than using
a fixed learning rate. Specifically, the mAP scores of three models show improvements
ranging from 1% to 5%.

By comparing results in the DP2024 dataset and the COCO dataset, we observe dis-
tinct differences across various models. For Faster R-CNN, the model shows outstanding
performance in our dataset, achieving an mAP score higher than 5% and 4%, respectively
on the VGG16 and ResNet101 backbones. This indicates that the Faster R-CNN model
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Table 1. Results of the models with different backbones.

Model Backbone Is dynamic lr COCO-mAP DP2024-mAP DP2024-Loss

Faster RCNN VGG16 No 0.42 [17] 0.38 0.33

Faster RCNN VGG16 Yes - 0.50 0.24

Faster RCNN Resnet101 No 0.36 [18] 0.11 0.39

Faster RCNN Resnet101 Yes - 0.16 0.27

YOLOv3 Darknet-53 No 0.33 [18] 0.40 0.40

YOLOv3 Darknet-53 Yes - 0.31 0.41

DETR Resnet50 No 0.43 [22] 0.08 3.30

DETR Resnet50 Yes - 0.10 2.40

DETR Resnet152 No 0.45 [22] 0.06 0.40

DETR Resnet152 Yes - 0.07 2.50

is well-suited for our dataset, which features small object regions with minimal differences
in the surrounding areas.

Due to YOLOv3’s ”one-stage” approach, this model does not have the process of gen-
erating object proposals like Faster R-CNN, leading to missed detections or less accurate
identification of complex objects. Given the characteristics of our dataset, which has a
high degree of diversity and where the size of the objects is much smaller compared to the
image dimensions, YOLOv3 yields a relatively low mAP score along with a considerable
loss.

Regarding DETR, despite the significant improvements in metrics when changing the
backbone or the learning rate, this model does not perform well on the DP2024 dataset.
The main reason is that DETR requires a very large dataset (over 300,000 images) like
COCO, whereas our dataset contains only about 2,000 images, failing to meet the model’s
requirements. Furthermore, DETR also requires a long training time with a large number
of epochs (more than 500 epochs). Due to limitations in time and resources, this study
has not been able to meet the demands of the DETR model, resulting in unsatisfactory
results when implemented in practice.

Moreover, the results also indicate that the deeper the CNN-based backbone, the poorer
the performance on this dataset. This can be explained as follows: A deeper network
has a larger number of trainable parameters; with a small dataset, the training process is
insufficient to update these parameters to match the distribution of the TDP2024 dataset,
even when these backbones have been pre-trained on the ImageNet dataset. Therefore,
in the results, the VGG16 backbone demonstrates an appropriate number of trainable
parameters for this dataset.

The predicted results for dental decay images obtained from this experimental study are
presented in Figures 12, showing the results sequentially for the Faster R-CNN, YOLOv3,
and DETR models.

Faster R-CNN model with the proposed improved method achieved the best accuracy of
0.99 on dental decay images with small sizes. In addition, the models also had a prediction
processing speed of 0.1 seconds per image.

The results of the YOLOv3 model are clearly distinguished between the different levels
of dental decay; however, its confidence scores were not very high (ranging from 22% to
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Figure 12. Results of models: Faster R-CNN (11-A), YOLOv3 (11-B)
and DETR (11-C)

34%), indicating that these results may not be completely accurate and require further
manual verification by a dentist.

DETRmodel’s result can be seen that the bounding boxes are trending towards marking
the locations of dental decay, but they are still significantly off and the accuracy is very
low. To improve the accuracy of the DETR model, a substantial increase in the size of the
dataset is needed, which requires considerable time and effort. Therefore, using DETR
to detect dental decay based on DP2024 is not practical.

Based on these results, the use of modern models with a method of varying learning
rates during the training process for the object detection task with a small dataset has
proven feasible and yielded promising results. This approach can be applied in practice,
providing a relatively high-accuracy method to assist in the detection of dental decay in
children.

5. CONCLUSION. This research has applied advanced deep learning models such as
Faster R-CNN, YOLOv3, and DETR to detect dental caries in children. The results of
the comparative table indicate that models with different backbones have varying levels
of effectiveness. In particular, the use of a dynamic learning rate strategy significantly
improved the mAP accuracy in the DP2024 dataset for both the Faster R-CNN and
YOLOv3 models, as clearly reflected in the mAP and loss values. Specifically, Faster R-
CNN with VGG16 and ResNet101 backbones showed improvements in mAP and reduced
loss when employing the dynamic learning rate compared to not using it. For YOLOv3,
the improvement in mAP, although small, is still significant with the use of a dynamic
learning rate. Regarding the DETR model, while the mAP values on the DP2024 dataset
are still low, models with the ResNet152 backbone demonstrate potential with a slight
improvement in accuracy compared to ResNet50. This research also has some limitations
as follows:

• This research was conducted on a dataset with a very small number of labels (3
labels: Mild decay, Moderate decay, and Severe decay). This limits the study’s
applicability to a broader range of pathologies, confining it only to the conditions
present in the dataset.

• The proposed learning rate adjustment method in the study, while capable of im-
proving the accuracy of some models, was not adaptable to certain others (e.g. the
YOLOv3 model in the study). This indicates that the proposed method has po-
tential for further development but lacks a solid mathematical foundation to ensure
consistent improvement.



480 T.N. Huu, Q.D.T. Thuy

• Although the learning rate adjustment method improved accuracy, it did not address
the issue of small datasets in some related models, such as Transformer-based archi-
tectures. For example, in the DETR model, while accuracy improved, the results
were still insignificant for commercial application.

• Techniques to overcome accuracy limitations, such as few-shot learning and transfer
learning, have not yet been applied to enhance the models’ performance.
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